
MA Advanced Econometrics:
Applying Least Squares to Time Series

Karl Whelan

School of Economics, UCD

February 15, 2011

Karl Whelan (UCD) Time Series February 15, 2011 1 / 24



Part I

Time Series: Standard Asymptotic Results
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OLS Estimates of AR(n) Models Are Biased

Consider the AR(1) model

yt = ρyt−1 + εt (1)

The OLS estimator for a sample of size T is

ρ̂ =

∑T
t=2 yt−1yt∑T
t=2 y2

t−1

(2)

= ρ +

∑T
t=2 yt−1εt∑T
t=2 y2

t−1

(3)

= ρ +
T∑

t=2

(
yt−1∑T
t=2 y2

t−1

)
εt (4)

εt is independent of yt−1, so E (yt−1εt) = 0. However, εt is not

independent of the sum
∑T

t=2 y2
t−1. If ρ is positive, then a positive shock

to εt raises current and future values of yt , all of which are in the sum∑T
t=2 y2

t−1. This means there is a negative correlation between εt and
yt−1∑T
t=2 y2

t−1

, so E ρ̂ < ρ. (More on this later.)
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Time Series: Serially Dependent Observations

OLS estimates of AR models are biased. What about consistency? Do the
estimates get closer to the correct value as samples get larger? The recipe
for deriving asympototic properties of estimators has been to use a Law of
Large Numbers and a Central Limit Theorem. Up to now, we have only
discussed regressions using observations that are independently distributed
and have used versions of the LLN and CLT for independent observations.

However, observations from time series are not independent. For instance,
for an AR(n) process of the form

yt = α + ρ1yt−1 + ρ1yt−1 + ... + ρnyt−n + εt (5)

each observation depends on what happens in the past.

LLNs and CLTs may not work for time series. For example, suppose yt is
highly autocorrelated, so that when the series has high values, it tends to
stay high and when the series is low, it tends to stay low. This might mean
that even if we have a lot of observations, we can’t necessarily be sure that
the sample average is a good estimator of the population average.

It turns out there are some conditions under which WLLNs and CLTs hold
for time series but these conditions sometimes don’t hold.
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Some Definitions

We say that a time series of observations {yt} is covariance (weakly)
stationary if E yt = µ for all t and Cov (yt , yt−k) is independent of t.

As yt moves up and down, then E (yt |yt−1) will generally change. However,
the stationarity here refers to the ex ante unconditional distribution, i.e. the
distribution of outcomes that would have been expected before time has
begun.

We say that {yt} is strictly stationary if the unconditional joint distribution
of {yt , yt−1, ...., yt−k} is independent of t for all k.

For a weakly stationary series, let Cov (yt , yt−k) = γ(k). We say that {yt} is
ergodic if γ(k) → 0 as k →∞.

Let F t = {yt , yt−1, ...., yt−k}. We say that et is a martingale difference
sequence (MDS) if E (et | F t−1) = 0.

Armed with these definitions, we can state some theorems that allow us to
make statements about the asympototic behaviour of least squares estimates
of time series models.
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Time Series Versions of LLN and CLT

Ergodic Theorem: If yt is strictly stationary and ergodic and E |yt | < ∞
than as T →∞

1

T

T∑
i=1

yi
p→ E (yt) (6)

MDS Central Limit Theorem: If ut is a strictly stationary and ergodic
MDS and E (utu

′
t) = Ω < ∞, then as T →∞

1√
T

T∑
i=1

ui
d→ N (0,Ω) (7)

The following will be useful in applying these results

I If yt is strictly stationary and ergodic and xt = f (yt , yt−1.....) is a
random variable, then xt is also strictly stationary and ergodic.

I For the AR(1) model yt = α + ρyt−1 + εt , the series is strictly
stationary and ergodic if |ρ| < 1.

I For the AR(k) model yt = α + ρ1yt−1 + ... + ρkyt−k + εt , the series is
strictly stationary and ergodic if the roots of the polynomial
ρ1L + .... + ρkL

k are all less than one in absolute value.
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Estimating an AR(k) Regression

Consider estimating AR(k) model yt = α + ρ1yt−1 + ... + ρkyt−k + εt . Let

xt =
(

1 yt−1 yt−2 ... yt−k

)′
(8)

β =
(

α ρ1 ρ2 ... ρk

)′
(9)

The vector xt is strictly stationary and ergodic, which means that xtx
′
t also

is. Thus, we can use the ergodic theorem to show that

1

T

T∑
i=1

xtx
′
t

p→ E (xtx
′
t) = Q (10)

We can also show that xtεt is stationary and ergodic, so

1

T

T∑
i=1

xtεt
p→ E (xtεt) = 0 (11)

This means OLS estimators, though biased, are consistent:

β̂ = β +

(
1

T

T∑
i=1

xtx
′
t

)−1(
1

T

T∑
i=1

xtεt

)
p→ Q−1.0 = 0 (12)
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Asymptotic Distribution of OLS Estimator

Let ut = xtet . This is a MDS because

E (ut | F t−1) = E (xtet | F t−1) = xt E (et | F t−1) = 0 (13)

Applying the MDS version of the CLT

1√
T

T∑
i=1

xtet
d→ N (0,Ω) (14)

where
Ω = E

(
xtx

′
te

2
t

)
(15)

This means that if yt is an AR(k) process that is strictly stationary and
ergodic and E y4

t < ∞ then

√
T
(
β̂ − β

)
d→ N

(
0,Q−1ΩQ−1

)
(16)

The condition E y4
t < ∞ is required for the covariance matrix to be finite.
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Example AR(1) Regression

Consider using OLS to estimate the coefficient ρ for the series

yt = ρyt−1 + εt (17)

The previous results tell us that
√

T (ρ̂− ρ)
d→ N (0, ω) (18)

where

ω =
E
(
y2
t−1ε

2
t

)(
E y2

t−1

)2 (19)

Letting Var (εt) = σ2
ε , we can calculate the asymptotic variance of yt from

Var (yt) = ρ2Var (yt−1) + σ2
ε ⇒ Var (yt) →

σ2
ε

1− ρ2
= σ2

y (20)

Thus

ω =
E
(
y2
t−1ε

2
t

)
(E yt−1)

2 =
σ2

yσ
2
ε(

σ2
y

)2 =
σ2

ε

σ2
y

= 1− ρ ⇒
√

T (ρ̂− ρ)
d→ N

(
0, 1− ρ2

)
(21)
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Part II

Unit Roots
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What Happens When ρ = 1?

Consider the process
yt = yt−1 + εt (22)

where Var (εt) = σ2 for all t and which began with the observation y0.

We can apply repeated substitution to this series to get

yt = εt + εt−1 + εt−2 + ..... + y0 (23)

This implies that

Var (yt) = σ2t (24)

Cov (yt , yt−k) = Cov (εt + εt−1 + ....., εt−k + εt−k−1 + .....) (25)

= σ2 (t − k) (26)

This series is not covariance stationary (the covariances depend on t) and
it’s not ergodic (covariances with far past observations don’t go to zero).

If we consider a process of form yt = α + yt−1 + εt , then it’s not covariance
stationary, not ergodic and E yt →∞ as t →∞.
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Asymptotics with Unit Root Processes?

We have derived that the OLS to estimator applied to the AR(1) process

yt = ρyt−1 + εt has the property that
√

T (ρ̂− ρ)
d→ N

(
0, 1− ρ2

)
.

You might be tempted to think that we can use the logic underlying this
argument to prove that variance of this asymptotic distribution goes to zero
when ρ = 1, i.e. that the distribution collapses on the true value ρ. It turns
out that this is indeed the case. However, you cannot use any of the
previous arguments to prove this.

Indeed, none of the previous arguments proving asymptotic normality hold
because the assumptions underlying the Ergodic Theorem or the MDS
version of the CLT do not hold in this case. The yt series

I Is not covariance stationary (variances increase as t gets larger).
I Is not ergodic (the covariance with long-past observations does not go

to zero).
I Does not tend towards a finite variance

Similarly, the previous arguments do not apply to any AR(k) series in which
one is a root of the polynomial 1− ρ1L− ....− ρkL

k . Series of this sort are
referred to as unit root processes.
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Non-Normal Distributions When ρ = 1 With No Drift

For the process for which yt = yt−1 + εt (i.e. a unit root with no intercept
or drift) then the asymptotic distribution of the OLS estimator depends
upon the regression specificiation:

1 If no intercept is included and yt is regressed on yt−1, the distribution
of ρ̂ is non-Normal and skewed with most of the estimates below one
(see next page) and the distribution of the t statistic testing H0 : ρ = 1
is nonstandard.

2 If an intercept is included in the regression, then the skewness and
downward bias are far more serious (see the page after next). The
critical value for rejecting the null of ρ = 1 at the 5% level changes
from -1.95 with no intercept to -2.86 in large samples.

3 The usual test procedures for these cases involve using the critical
values derived by Dickey and Fuller (1976). While an analytical
asympototic distribution exists, people usually use values from
finite-sample distributions obtained by Monte Carlo (computer
simulation) methods.
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Distribution of ρ̂ Under Unit Root (No Drift): No
Constant in Regression (T = 1000)
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Distribution of t test of H0 : ρ = 1 Under Unit Root (No
Drift): No Constant in Regression (T = 1000)
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Distribution of ρ̂ Under Unit Root (No Drift): Constant in
Regression (T = 1000)
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Distribution of t test of H0 : ρ = 1 Under Unit Root (No
Drift): Constant in Regression (T = 1000)
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Testing ρ = 1 for a Unit Root With Drift

Most macroeconomic time series grow over time, so they are clearly not
described by yt = ρyt−1 + εt , which doesn’t impart any trend to the series.

So, for macroeconomic series, the question of whether the series has a unit
root is usually phrased as whether the series has a deterministic time trend

yt = α + δt + ρyt−1 + εt (27)

where 0 < ρ < 1 or whether the series has a stochastic trend, meaning the
series is a unit root with drift

yt = δ + yt−1 + εt (28)

If the true process is of the form (28), then the asymptotic distribution of
the OLS estimator depends upon the regression specificiation:

1 If we regress yt on a constant and yt−1, then ρ̂ converges to a normal
distribution and the usual t and F tests can be compared with their
usual critical values. (See next two pages)

2 If we estimate a “nesting” specification, regress yt on a constant and
yt−1 and a time trend, then we again get a skewed non-normal
distribution. (See the following two pages).
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Distribution of ρ̂ Under Unit Root With Drift: Constant
But No Trend in Regression (T = 1000)
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Distribution of t test of H0 : ρ = 1 Under Unit Root With
Drift: Constant But No Trend in Regression (T = 1000)
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Distribution of ρ̂ Under Unit Root With Drift: Constant
and Trend in Regression (T = 1000)
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Distribution of t test of H0 : ρ = 1 Under Unit Root With
Drift: Constant and Trend in Regression (T = 1000)
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Computing Critical Values

Note that you can easily use computer simulations to calculate critical
values. In the case of testing for a unit root against a deterministic time
trend, you could consult tables like those at the back of Hamilton’s textbook
to find out that the 5% critical value for rejecting the unit root is -3.41. Or
you could do Monte Carlo simulation, save the results and calculate the
fractiles. See below:
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Unit Root Testing for AR(k) Processes

For the AR(k) model yt = α + ρ1yt−1 + ... + ρkyt−k + εt , the series is
strictly stationary and ergodic if the roots of the polynomial
1− ρ1L− ....− ρkL

k are all less than one in absolute value.

One is a root of this polyomial if 1− ρ1 − ....− ρk = 0 ⇒
∑k

i=1 ρi = 1 .

Note now that we can re-write an AR(2) process as follows

yt = α + ρ1yt−1 + ρ2yt−2 + εt (29)

= α + ρ1yt−1 + ρ2yt−1 − ρ2yt−1 + ρ2yt−2 + εt (30)

= α + (ρ1 + ρ2) yt−1 + γ∆yt−1 + εt (31)

So, AR(k) series have a representation of the following form

yt = α + γ1∆yt−1 + ... + γk−1∆yt−k+1 +

(
k∑

i=1

ρi

)
yt−1 + εt (32)

When testing for a unit root in an AR(k) process, we can use the same
Dickey-Fuller critical values for testing ρ = 1 in the augmented regression

yt = α + γ1∆yt−1 + ... + γk−1∆yt−k+1 + ρyt−1 + εt (33)
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